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Abstract 
 
The impact of a small particle with a wear surface can lead to very high strain-rates in 

the material being encountered. Often predictive erosion models are based on material 

property parameters taken from quasistatic test conditions. However, the material 

properties of the impacted wear surface can change dramatically with strain and strain-

rate, leaving some doubt as to the validity of an erosion model based on quasistatic 

parameter values. In this study, a new stress-wave monitoring process is developed for 

the study of material characteristics and erosion phenomena, at strain-rates approaching 

106s-1. For this study a newly designed piezo-electric transducer was used to monitor the 

stress-waves produced by small erosive particle impact events. A computational study 

was also conducted to aid in the transducer design and location distance from the impact 

source by considering the effects caused by spatial averaging. Spatial averaging affects 

the recorded stress-wave signal and is caused by the curvature of the stress-wave as the 

wave passes through the flat piezo-electric sensing element. 

 

This study was conducted using a computational and experimental approach. The joint 

study allowed significant knowledge to be gained for the study of elasto-plastic impact 

and stress-wave motion. Finite element analysis (FEA) was used to model the 

experimental system in detail. The stress-waves produced by the experimental process 

were directly compared to the FEA model. Once the FEA model was validated, detailed 

information from the impact event at the surface could be obtained from the model, 

which would otherwise be difficult if not impossible to obtain experimentally. 

 

The issues of wave dispersion have been an underlying problem in the correct 

interpretation of stress-wave phenomena for many years. The impact of the wear surface 

causes stress-waves with many frequency components, each component propagating 

through the wear material at distinct wave velocities. Wave dispersion causes the initial 

stress-wave pulse to be dispersed into many waveforms. In this study the longitudinal 

stress-wave was the main waveform studied. FEA simulations were conducted for a 

purely elastic impact and an impact causing significant  plastic deformation of the 

surface. A comparison between these waveforms showed that in the case of impacts 

causing plastic deformation, the initial part of the stress-wave, measured from the time 
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of arrival to the first peak, corresponded to the elastic stress component of the impact 

event at the surface. The characterisation of the waveform in regards to elastic and 

plastic stress components at the surface was significant for validating model parameters 

of the Johnson-Cook material model. 

  

The stress-wave monitoring process was applied in the first instance to erosive particle 

impacts to AISI 1020 steel at impact velocities up to 104m/s. A specially designed 

erosion apparatus, fitted with a modified double disc system was used to impact the 

10mm thick steel plate. The piezo-electric transducer was firmly clamped to the rear 

surface, directly behind the point of impact to obtain the stress-wave signals produced 

by impacts of 0.4mm zirconia spheres. The study showed that the contact interface of 

the wear material and the piezo-electric transducer could cause a phase change and 

amplitude reduction of the stress-wave transmitted to the transducer at wave frequencies 

above 0.9MHz. The results showed that the most likely cause for the phase shift to 

occur was the restriction of tensile stresses across the contact interface. For wave 

frequencies below 0.9MHz, no phase shift or amplitude reduction was apparent in the 

experimental stress-wave recordings. 

 

The combined experimental / FEA study was shown to be able to validate the strain-rate 

parameter of the Johnson-Cook model. The parameters, which could not be validated by 

the stress-wave monitoring process, were the parameters relating to plastic deformation 

of the surface, which were the strain-hardening terms of the Johnson-Cook model. 

These terms were later validated by studying the extent of plastic deformation at the 

surface, which occurred in the form of impact craters. By comparing the predicted 

impact crater depths from the FEA model with the experimental results, the strain-

hardening parameters of the Johnson-Cook model could be validated.  

 

The robustness of the stress-wave monitoring process was proven for the impact study 

of ultra high molecular weight polyethylene (UHMWPE) and vinyl ester resin (VER). 

Unlike AISI 1020 steel, little is know about the high strain-rate response of these 

polymers. Initial estimates of material property parameters were made by applying 

computational curve fitting techniques to the stress-strain curves of similar polymers, 

which were from published results obtained from split Hopkinson’s pressure bar 

method. The impact and stress-wave study showed UHMWPE and VER to be highly 
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sensitive to strain-rate effects. The main effect was a substantial increase in hardness 

with increasing strain-rate and it was considered that the hydrostatic stress component 

contributed to the strain hardening of the polymers.  

 

The stress-wave monitoring and FEA computational techniques developed in this study 

were implemented in the development of an improved erosion model. The model form 

is similar to that of the well-known Ratner-Lancaster model. The Ratner-Lancaster 

model assumes wear rate to be proportional to the inverse of deformation energy, where 

deformation energy is approximated as the product of the ultimate stress and ultimate 

strain.  The improved Ratner-Lancaster model uses the Johnson-Cook model to obtain 

the von-Mises stress as a function of strain. The area integral of the stress-strain curve is 

used to derive the deformation energy capacity of the material in the deformed zone 

close to the surface. The model accounts for strain, strain-rate and thermal effects and is 

therefore more soundly based on material deformation characteristics valid for erosion 

events than the Ratner-Lancaster model assumptions. The model developed in this work 

was applied to the erosion study of 1020 steel, UHMWPE and VER, with good 

correlation being obtained between experimental erosion rates and model predictions. 
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Nomenclature 
 

 
Quantity 
symbol 

Term Unit symbol First text 
reference 

α The angle of the particle trajectory 
relative to the wear surface 

Degrees 2.1.1 

H Material hardness Pa 2.1.1 
m Mass kg 2.1.1 
W Wear or erosion rate mm3g-1 2.1.1 
ρ Density Kg m-3 2.1.1 
V Velocity m s -1 2.1.1 
E Energy N m 2.1.1 
σu Ultimate stress, defined by the stress at 

the point of failure  
Pa 2.1.2 

εu Ultimate strain, defined by the strain at 
the point of failure 

Dimensionless 2.1.2 

µ Coefficient of friction Dimensionless 2.1.2 
σyield Yield stress Pa 2.1.2 
εyield Yield strain Dimensionless 2.1.2 

εp Plastic strain Dimensionless 2.2.1 
ε&  Plastic strain-rate s -1 2.2.1 
T Temperature Degrees C 2.2.1 
σf Flow stress Pa 2.2.2 
ν Poisson’s ratio Dimensionless 3.1.1 
cel Bulk elastic wave speed m s -1 3.1.1 
ET Plastic or tangent modulus Pa 3.1.1 

Vout Output voltage Volts 3.2.2 
X Electrical impedance Ohms  3.2.5 
σy Stress in the y direction Pa 3.2.8 
Bm Elastic bulk modulus Pa 5.2.1 
G Shear modulus Pa 5.2.1 
Cp Specific Heat J/kg K 5.4.1 
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